Existence of Nonoscillatory Solutions of First-Order Neutral Difference Equations

A. George Maria Selvam ${ }^{* 1}$, M. Paul Loganathan ${ }^{2}$, C. Silambarasan ${ }^{3}$
${ }^{* 1}$ Department of Mathematics, Sacred Heart College, Tirupattur, Vellore, Tamil Nadu. India
${ }^{2}$ Department of Mathematics, Dravidian University, Kuppam, Andhra Pradesh . India
${ }^{3}$ Department of Mathematics, Sacred Heart College, Tirupattur, Vellore, Tamil Nadu. India

Abstract

In this paper, we study the existence of nonoscillatory solution of first-order neutral difference equations with delay and advance terms. Some sufficient conditions for the existence of positive solutions are obtained. Banach contraction principle is used in the proofs of the results.

Keywords and Phrases: Difference Equations, Nonoscillation, Positive Solutions, Banach Contraction Principle.

I. INTRODUCTION

In this paper, we consider a first-order neutral difference equation

$$
\begin{align*}
& \Delta\left[x(n)+P_{1}(n) x\left(n-\tau_{1}\right)+P_{2}(n) x\left(n+\tau_{2}\right)\right] \tag{1.1}\\
& +Q_{1}(n) x\left(n-\sigma_{1}\right)-Q_{2}(n) x\left(n+\sigma_{2}\right)=0
\end{align*}
$$

where $P_{1}, P_{2} \in C\left(\left[t_{0}, \infty\right), R\right), Q_{1}, Q_{2} \in C\left(\left[t_{0}, \infty\right),[0, \infty)\right)$, $\tau_{1}, \tau_{2}>0$ and $\sigma_{1}, \sigma_{2} \geq 0$.

We present some new criteria for the existence of nonoscillatory solutions of the First Order Neutral Difference Equation (1.1). Recently, the existence of nonoscillatory solutions of neutral difference equations has been investigated by many authors, see [3, 6, 7, 10, 11] and the references contained therein. There have been several books on the subject of qualitative properties of neutral difference equations $[1,2,5]$.

Let $m=\max \left\{\tau_{1}, \sigma_{1}\right\}$. A solution of the difference equation (1.1) is called eventually positive if there exists a positive integer n_{0} such that $x(n)>0$ for $n \in N\left(n_{0}\right)$. If there exists a positive integer n_{0} such that $x(n)<0$ for $n \in N\left(n_{0}\right)$, then (1.1) is called eventually negative.

The solution of the difference equation (1.1) is said to be oscillatory if it is neither eventually positive nor eventually negative. Otherwise, it is called nonoscillatory.

This paper deals with the discrete version of the equation discussed in [9]. The following important theorem is needed in the proof of main results.

Theorem 1.1 (Banach's Contraction Mapping Principle). A contraction mapping on a complete metric space has exactly one fixed point.

II. EXISTENCE OF POSITIVE BOUNDED SOLUTIONS

We shall show that an operator S satisfies the conditions for the contraction mapping principle by considering different cases for the ranges of the coefficients $P_{1}(n)$ and $P_{2}(n)$.
Theorem 2.1. Assume that $0 \leq P_{1}(n) \leq p_{1}<1$,
$0 \leq P_{2}(n) \leq p_{2}<1-p_{1}$ and

$$
\begin{equation*}
\sum_{s=n_{0}}^{\infty} Q_{1}(s)<\infty, \sum_{s=n_{0}}^{\infty} Q_{2}(s)<\infty \tag{2.1}
\end{equation*}
$$

Then (1.1) has a bounded non-oscillatory solution.

Proof. Because of (2.1) we can choose $n_{1} \geq n_{0}$,

$$
\begin{equation*}
n_{1} \geq n_{0}+\max \left\{\tau_{1}, \sigma_{1}\right\} \tag{2.2}
\end{equation*}
$$

Sufficiently large such that

$$
\begin{gather*}
\sum_{s=n}^{\infty} Q_{1}(s) \leq \frac{M_{2}-\alpha}{M_{2}}, n \geq n_{1}, \tag{2.3}\\
\sum_{s=n}^{\infty} Q_{2}(s) \leq \frac{\alpha-\left(p_{1}+p_{2}\right) M_{2}-M_{1}}{M_{2}}, n \geq n_{1} . \tag{2.4}
\end{gather*}
$$

where M_{1} and M_{2} are positive constants such that $\left(p_{1}+p_{2}\right) M_{2}+M_{1}<M_{2}$ and
$\alpha \in\left(\left(p_{1}+p_{2}\right) M_{2}+M_{1}, M_{2}\right)$.
Let $l_{n_{0}}^{\infty}$ be the set of all real sequence with the norm $\|x\|=\sup |x(n)|<\infty$. Then $l_{n_{0}}^{\infty}$ is a Banach space. We define a closed, bounded and convex subset Ω of $l_{n_{0}}^{\infty}$ as follows

$$
\Omega=\left\{x \in l_{n_{0}}^{\infty}: M_{1} \leq x(n) \leq M_{2}, n \geq n_{0}\right\} .
$$

Define a mapping $S: \Omega \rightarrow l_{n_{0}}^{\infty}$ as follows

$$
(S x)(n)=\left\{\begin{array}{l}
\alpha-P_{1}(n) x\left(n-\tau_{1}\right)-P_{2}(n) x\left(n+\tau_{2}\right) \\
+\sum_{s=n}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right], n \geq n_{1}, \\
(S x)\left(n_{1}\right), \\
n_{0} \leq n \leq n_{1} .
\end{array}\right.
$$

Obviously $S x$ is continuous. For $n \geq n_{1}$ and $x \in \Omega$, from (2.3) and (2.4) respectively, it follows that

$$
\begin{aligned}
(S x)(n) & \leq \alpha+\sum_{s=n}^{\infty} Q_{1}(s) x\left(s-\sigma_{1}\right) \\
& =\alpha+M_{2} \sum_{s=n}^{\infty} Q_{1}(s) \\
& =\alpha+M_{2}\left(\frac{M_{2}-\alpha}{M_{2}}\right) \\
(S x)(n) & \leq M_{2}
\end{aligned}
$$

Also we have

$$
\begin{aligned}
(S x)(n) & \geq \alpha-P_{1}(n) x\left(n-\tau_{1}\right)-P_{2}(n) x\left(n+\tau_{2}\right)-\sum_{s=n}^{\infty} Q_{2}(s) x\left(s+\sigma_{2}\right) \\
& \geq \alpha-p_{1} M_{2}-p_{2} M_{2}-M_{2} \sum_{s=n}^{\infty} Q_{2}(s) \\
& =\alpha-p_{1} M_{2}-p_{2} M_{2}-M_{2}\left(\frac{\alpha-\left(p_{1}+p_{2}\right) M_{2}-M_{1}}{M_{2}}\right)
\end{aligned}
$$

$(S x)(n) \geq M_{1}$

Hence

$$
M_{1} \leq(S x)(n) \leq M_{2} \text { for } n \geq n_{1}
$$

Thus we have proved that $(S x)(n) \in \Omega$ for any $x \in \Omega$.

This means that $S \Omega \subset \Omega$. To apply contraction mapping principle, we shall show S is a contraction mapping on Ω. Thus $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$,

$$
\begin{aligned}
& \left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \\
& =\mid \alpha-P_{1}(n) x_{1}\left(n-\tau_{1}\right)-P_{2}(n) x_{1}\left(n+\tau_{2}\right) \\
& +\sum_{s=n}^{\infty}\left[Q_{1}(s) x_{1}\left(s-\sigma_{1}\right)-Q_{2}(s) x_{1}\left(s+\sigma_{2}\right)\right] \\
& -\left(\alpha-P_{1}(n) x_{2}\left(n-\tau_{1}\right)-P_{2}(n) x_{2}\left(n+\tau_{2}\right)\right. \\
& \left.+\sum_{s=n}^{\infty}\left[Q_{1}(s) x_{2}\left(s-\sigma_{1}\right)-Q_{2}(s) x_{2}\left(s+\sigma_{2}\right)\right]\right) \mid \\
& \leq P_{1}(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right| \\
& +P_{2}(n)\left|x_{1}\left(n+\tau_{2}\right)-x_{2}\left(n+\tau_{2}\right)\right| \\
& +\sum_{s=n}^{\infty} Q_{1}(s)\left|x_{1}\left(s-\sigma_{1}\right)-x_{2}\left(s-\sigma_{1}\right)\right| \\
& +\sum_{s=n}^{\infty} Q_{2}(s)\left|x_{1}\left(s+\sigma_{2}\right)-x_{2}\left(s+\sigma_{2}\right)\right| \\
& \leq p_{1}\left\|x_{1}-x_{2}\right\|+p_{2}\left\|x_{1}-x_{2}\right\|+\sum_{s=n}^{\infty} Q_{1}(s)\left\|x_{1}-x_{2}\right\| \\
& +\sum_{s=n}^{\infty} Q_{2}(s)\left\|x_{1}-x_{2}\right\| \\
& =\left(p_{1}+p_{2}+\sum_{s=n}^{\infty} Q_{1}(s)+\sum_{s=n}^{\infty} Q_{2}(s)\right)\left\|x_{1}-x_{2}\right\| \\
& =\left(p_{1}+p_{2}+\frac{M_{2}-\alpha}{M_{2}}+\frac{\alpha-\left(p_{1}+p_{2}\right) M_{2}-M_{1}}{M_{2}}\right) \\
& \left\|x_{1}-x_{2}\right\| \\
& =\frac{M_{2}-M_{1}}{M_{2}}\left(\left\|x_{1}-x_{2}\right\|\right) \\
& =\lambda_{1}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\quad \lambda_{1}=1-\frac{M_{1}}{M_{2}}$. This implies that

$$
\left\|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right\| \leq \lambda_{1}\left\|x_{1}-x_{2}\right\| .
$$

Thus we have proved that S is a contraction mapping on Ω. In fact $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$ we have

$$
\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \leq p(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right| \leq \lambda_{1}\left\|x_{1}-x_{2}\right\| .
$$

Since $0<\lambda_{1}<1$, we conclude that S is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

Theorem 2.2. Assume that $0 \leq P_{1}(n) \leq p_{1}<1$,
$p_{1}-1<p_{2} \leq P_{2}(n) \leq 0$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.
Proof. Because of (2.1) we can choose $n_{1} \geq n_{0}$ sufficiently large satisfying (2.2) such that

$$
\begin{align*}
& \sum_{s=n}^{\infty} Q_{1}(s) \leq \frac{\left(1+p_{2}\right) N_{2}-\alpha}{N_{2}}, \quad n \geq n_{1}, \tag{2.5}\\
& \sum_{s=n}^{\infty} Q_{2}(s) \leq \frac{\alpha-p_{1} N_{2}-N_{1}}{N_{2}}, \quad n \geq n_{1} . \tag{2.6}
\end{align*}
$$

where N_{1} and N_{2} are positive constants such that
$N_{1}+p_{1} N_{2}<\left(1+p_{2}\right) N_{2}$ and $\alpha \in\left(N_{1}+p_{1} N_{2},\left(1+p_{2}\right) N_{2}\right)$.
Let $l_{n_{0}}^{\infty}$ be the set of all real sequence with the norm $\|x\|=\sup |x(n)|<\infty$. Then $l_{n_{0}}^{\infty}$ is a Banach space. We define a closed, bounded and convex subset Ω of $l_{n_{0}}^{\infty}$ as follows

$$
\Omega=\left\{x \in l_{n_{0}}^{\infty}: N_{1} \leq x(n) \leq N_{2}, n \geq n_{0}\right\} .
$$

Define a mapping $S: \Omega \rightarrow l_{n_{0}}^{\infty}$ as follows

$$
(S x)(n)=\left\{\begin{array}{l}
\alpha-P_{1}(n) x\left(n-\tau_{1}\right)-P_{2}(n) x\left(n+\tau_{2}\right) \\
+\sum_{s=n}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right], n \geq n_{1}, \\
(S x)\left(n_{1}\right), \\
n_{0} \leq n \leq n_{1} .
\end{array}\right.
$$

Obviously $S x$ is continuous. For $n \geq n_{1}$ and $x \in \Omega$, from (2.5) and (2.6) respectively, it follows that

$$
\begin{aligned}
(S x)(n) & \leq \alpha-P_{2}(n) x\left(n+\tau_{2}\right)+\sum_{s=n}^{\infty} Q_{1}(s) x\left(s-\sigma_{1}\right) \\
& \leq \alpha-p_{2} N_{2}+N_{2} \sum_{s=n}^{\infty} Q_{1}(s) \\
& =\alpha-p_{2} N_{2}+N_{2}\left(\frac{\left(1+p_{2}\right) N_{2}-\alpha}{N_{2}}\right)
\end{aligned}
$$

$$
(S x)(n) \leq N_{2}
$$

Also

$$
\begin{aligned}
(S x)(n) & \geq \alpha-P_{1}(n) x\left(n-\tau_{1}\right)-\sum_{s=n}^{\infty} Q_{2}(s) x\left(s+\sigma_{2}\right) \\
& \geq \alpha-p_{1} N_{2}-N_{2} \sum_{s=n}^{\infty} Q_{2}(s) \\
& =\alpha-p_{1} N_{2}-N_{2}\left(\frac{\alpha-p_{1} N_{2}-N_{1}}{N_{2}}\right)
\end{aligned}
$$

$(S x)(n) \geq N_{1}$

$$
N_{1} \leq(S x)(n) \leq N_{2} \text { for } n \geq n_{1} .
$$

Thus we have proved that $(S x)(n) \in \Omega$ for any $x \in \Omega$.
This means that $S \Omega \subset \Omega$. To apply contraction mapping principle, we shall show S is a contraction mapping on Ω. Thus $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$,

$$
\begin{aligned}
&\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \\
& \leq P_{1}(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right| \\
&+P_{2}(n)\left|x_{1}\left(n+\tau_{2}\right)-x_{2}\left(n+\tau_{2}\right)\right| \\
&+\sum_{s=n}^{\infty} Q_{1}(s)\left|x_{1}\left(s-\sigma_{1}\right)-x_{2}\left(s-\sigma_{1}\right)\right| \\
&+\sum_{s=n}^{\infty} Q_{2}(s)\left|x_{1}\left(s+\sigma_{2}\right)-x_{2}\left(s+\sigma_{2}\right)\right| \\
& \leq p_{1}\left\|x_{1}-x_{2}\right\|-p_{2}\left\|x_{1}-x_{2}\right\|+\sum_{s=n}^{\infty} Q_{1}(s)\left\|x_{1}-x_{2}\right\| \\
&+\sum_{s=n}^{\infty} Q_{2}(s)\left\|x_{1}-x_{2}\right\| \\
&=\left(p_{1}-p_{2}+\sum_{s=n}^{\infty} Q_{1}(s)+\sum_{s=n}^{\infty} Q_{2}(s)\right)\left\|x_{1}-x_{2}\right\| \\
&=\left(p_{1}-p_{2}+\frac{\left(1+p_{2}\right) N_{2}-\alpha}{N_{2}}+\frac{\alpha-p_{1} N_{2}-N_{1}}{N_{2}}\right) \\
&\left\|x_{1}-x_{2}\right\| \\
&= \frac{N_{2}-N_{1}}{N_{2}}\left(\left\|x_{1}-x_{2}\right\|\right) \\
&= \lambda_{2}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{2}=1-\frac{N_{1}}{N_{2}}$. This implies that

$$
\left\|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right\| \leq \lambda_{2}\left\|x_{1}-x_{2}\right\| .
$$

Thus we have proved that S is a contraction mapping on Ω. In fact $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$ we have
$\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \leq p(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right| \leq \lambda_{2}\left\|x_{1}-x_{2}\right\|$.
Since $0<\lambda_{2}<1, S$ is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

Theorem 2.3. Assume that $1<p_{1} \leq P_{1}(n)<p_{1_{0}}<\infty$, $0 \leq P_{2}(n) \leq p_{2}<p_{1}-1$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.
Proof. In view of (2.1), we can choose $n_{1} \geq n_{0}$,

$$
\begin{equation*}
n_{1}+\tau_{1} \geq n_{0}+\sigma_{1} \tag{2.7}
\end{equation*}
$$

Sufficiently large such that

Hence

$$
\begin{gather*}
\sum_{s=n}^{\infty} Q_{1}(s) \leq \frac{p_{1} M_{4}-\alpha}{M_{4}}, n \geq n_{1}, \tag{2.8}\\
\sum_{s=n}^{\infty} Q_{2}(s) \leq \frac{\alpha-p_{10} M_{3}-\left(1+p_{2}\right) M_{4}}{M_{4}}, n \geq n_{1} . \tag{2.9}
\end{gather*}
$$

where M_{3} and M_{4} are positive constants such that
$p_{1_{0}} M_{3}+\left(1+p_{2}\right) M_{4}<p_{1} M_{4}$ and
$\alpha \in\left(p_{1_{0}} M_{3}+\left(1+p_{2}\right) M_{4}, p_{1} M_{4}\right)$.
Let $l_{n_{0}}^{\infty}$ be the set of all real sequence with the norm $\|x\|=\sup |x(n)|<\infty$. Then $l_{n_{0}}^{\infty}$ is a Banach space. We define a closed, bounded and convex subset Ω of $l_{n_{0}}^{\infty}$ as follows

$$
\Omega=\left\{x \in l_{n_{0}}^{\infty}: M_{3} \leq x(n) \leq M_{4}, n \geq n_{0}\right\} .
$$

Define a mapping $S: \Omega \rightarrow l_{n_{0}}^{\infty}$ as follows

$$
(S x)(n)=\left\{\begin{array}{l}
\frac{1}{P_{1}\left(n+\tau_{1}\right)}\left\{\alpha-x\left(n+\tau_{1}\right)-P_{2}\left(n+\tau_{1}\right) x\left(n+\tau_{1}+\tau_{2}\right)\right. \\
\left.+\sum_{\substack{s+n \tau_{1}}}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right]\right\}, n \geq n_{1}, \\
(S x)\left(n_{1}\right), \\
n_{0} \leq n \leq n_{1} .
\end{array}\right.
$$

Obviously $S x$ is continuous. For $n \geq n_{1}$ and $x \in \Omega$, from (2.8) and (2.9) respectively, it follows that

$$
\begin{aligned}
(S x)(n) & \leq \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left(\alpha+\sum_{s=n+\tau_{1}}^{\infty} Q_{1}(s) x\left(s-\sigma_{1}\right)\right) \\
& \leq \frac{1}{p_{1}}\left(\alpha+M_{4} \sum_{s=n}^{\infty} Q_{1}(s)\right) \\
& =\frac{1}{p_{1}}\left(\alpha+M_{4}\left(\frac{p_{1} M_{4}-\alpha}{M_{4}}\right)\right) \\
(S x)(n) & \leq M_{4}
\end{aligned}
$$

We have

$$
\begin{aligned}
(S x)(n) \geq & \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left(\alpha-x\left(n+\tau_{1}\right)-P_{2}\left(n+\tau_{1}\right) x\left(n+\tau_{1}+\tau_{2}\right)\right. \\
& \left.-\sum_{s=n+\tau_{1}}^{\infty} Q_{2}(s) x\left(s+\sigma_{2}\right)\right) \\
\geq & \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left(\alpha-M_{4}-p_{2} M_{4}-M_{4} \sum_{s=n}^{\infty} Q_{2}(s)\right) \\
\geq & \frac{1}{p_{10}}\left(\alpha-\left(1+p_{2}\right) M_{4}-M_{4}\left(\frac{\alpha-p_{10} M_{3}-\left(1+p_{2}\right) M_{4}}{M_{4}}\right)\right)
\end{aligned}
$$

$(S x)(n) \geq M_{3}$

$$
M_{3} \leq(S x)(n) \leq M_{4} \text { for } n \geq n_{1} .
$$

Thus we have proved that $(S x)(n) \in \Omega$ for any $x \in \Omega$.
This means that $S \Omega \subset \Omega$. To apply contraction mapping principle, we shall show S is a contraction mapping on Ω. Thus $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$,

$$
\begin{aligned}
&\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \\
& \leq \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left(\left|x_{1}\left(n+\tau_{1}\right)-x_{2}\left(n+\tau_{1}\right)\right|\right. \\
&+P_{2}\left(n+\tau_{1}\right)\left|x_{1}\left(n+\tau_{1}+\tau_{2}\right)-x_{2}\left(n+\tau_{1}+\tau_{2}\right)\right| \\
&+\sum_{s=n+\tau_{1}}^{\infty} Q_{1}(s)\left|x_{1}\left(s-\sigma_{1}\right)-x_{2}\left(s-\sigma_{1}\right)\right| \\
&\left.+\sum_{s=n+\tau_{1}}^{\infty} Q_{2}(s)\left|x_{1}\left(s+\sigma_{2}\right)-x_{2}\left(s+\sigma_{2}\right)\right|\right) \\
& \leq \frac{1}{p_{1}}\left(\left\|x_{1}-x_{2}\right\|+p_{2}\left\|x_{1}-x_{2}\right\|+\sum_{s=n}^{\infty} Q_{1}(s)\left\|x_{1}-x_{2}\right\|\right. \\
&\left.+\sum_{s=n}^{\infty} Q_{2}(s)\left\|x_{1}-x_{2}\right\|\right) \\
&=\frac{1}{p_{1}}\left(1+p_{2}+\sum_{s=n}^{\infty} Q_{1}(s)+\sum_{s=n}^{\infty} Q_{2}(s)\right)\left\|x_{1}-x_{2}\right\| \\
&=\frac{1}{p_{1}}\left(1+p_{2}+\frac{p_{1} M_{4}-\alpha}{M_{4}}+\frac{\alpha-p_{1_{0}} M_{3}-\left(1+p_{2}\right) M_{4}}{M_{4}}\right) \\
&\left\|x_{1}-x_{2}\right\| \\
&= \frac{1}{p_{1}}\left(\frac{p_{1} M_{4}-p_{1_{0}} M_{3}}{M_{4}}\right)\left\|x_{1}-x_{2}\right\| \\
&= \lambda_{3}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{3}=1-\frac{p_{10} M_{3}}{p_{1} M_{4}}$. This implies that

$$
\left\|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right\| \leq \lambda_{3}\left\|x_{1}-x_{2}\right\| .
$$

Thus we have proved that S is a contraction mapping on Ω. In fact $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$ we have

$$
\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \leq p(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right| \leq \lambda_{3}\left\|x_{1}-x_{2}\right\| .
$$

Since $0<\lambda_{3}<1$, we conclude that S is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

Theorem 2.4. Assume that $1<p_{1} \leq P_{1}(n)<p_{1_{0}}<\infty$, $1-p_{1}<p_{2} \leq P_{2}(n) \leq 0$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.
Proof. In view of (2.1), we can choose $n_{1} \geq n_{0}$ sufficiently large satisfying (2.7) such that

Hence

$$
\begin{align*}
& \sum_{s=n}^{\infty} Q_{1}(s) \leq \frac{\left(p_{1}+p_{2}\right) N_{4}-\alpha}{N_{4}}, n \geq n_{1} \tag{2.10}\\
& \sum_{s=n}^{\infty} Q_{2}(s) \leq \frac{\alpha-p_{1_{0}} N_{3}-N_{4}}{N_{4}}, n \geq n_{1} . \tag{2.11}
\end{align*}
$$

where N_{3} and N_{4} are positive constants such that

$$
\begin{aligned}
& p_{1_{0}} N_{3}+N_{4}<\left(p_{1}+p_{2}\right) N_{4} \text { and } \\
& \alpha \in\left(p_{1_{0}} N_{3}+N_{4},\left(p_{1}+p_{2}\right) N_{4}\right) .
\end{aligned}
$$

Let $l_{n_{0}}^{\infty}$ be the set of all real sequence with the norm $\|x\|=\sup |x(n)|<\infty$. Then $l_{n_{0}}^{\infty}$ is a Banach space. We define a closed, bounded and convex subset Ω of $l_{n_{0}}^{\infty}$ as follows

$$
\Omega=\left\{x \in l_{n_{0}}^{\infty}: N_{3} \leq x(n) \leq N_{4}, n \geq n_{0}\right\} .
$$

Define a mapping $S: \Omega \rightarrow l_{n_{0}}^{\infty}$ as follows

$$
(S x)(n)=\left\{\begin{array}{l}
\frac{1}{P_{1}\left(n+\tau_{1}\right)}\left\{\alpha-x\left(n+\tau_{1}\right)-P_{2}\left(n+\tau_{1}\right) x\left(n+\tau_{1}+\tau_{2}\right)\right. \\
\left.+\sum_{s=n+\tau_{1}}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right]\right\}, n \geq n_{1}, \\
(S x)\left(n_{1}\right), \\
n_{0} \leq n \leq n_{1} .
\end{array}\right.
$$

Obviously $S x$ is continuous. For $n \geq n_{1}$ and $x \in \Omega$, from (2.10) and (2.11) respectively, it follows that

$$
\begin{aligned}
(S x)(n) \leq & \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left(\alpha-P_{2}\left(n+\tau_{1}\right) x\left(n+\tau_{1}+\tau_{2}\right)\right. \\
& \left.+\sum_{s=n+\tau_{1}}^{\infty} Q_{1}(s) x\left(s-\sigma_{1}\right)\right) \\
& \leq \frac{1}{p_{1}}\left(\alpha-p_{2} N_{4}+N_{4} \sum_{s=n}^{\infty} Q_{1}(s)\right) \\
& =\frac{1}{p_{1}}\left(\alpha-p_{2} N_{4}+N_{4}\left(\frac{\left(p_{1}+p_{2}\right) N_{4}-\alpha}{N_{4}}\right)\right) \\
(S x)(n) & \leq N_{4}
\end{aligned}
$$

Furthermore

$$
\begin{aligned}
(S x)(n) & \geq \frac{1}{P_{1}\left(n+\tau_{1}\right)}\left(\alpha-x\left(n+\tau_{1}\right)\right. \\
& \left.-\sum_{s=n+\tau_{1}}^{\infty} Q_{2}(s) x\left(s+\sigma_{2}\right)\right) \\
& \geq \frac{1}{p_{1_{0}}}\left(\alpha-N_{4}-N_{4} \sum_{s=n}^{\infty} Q_{2}(s)\right) \\
& =\frac{1}{p_{1_{0}}}\left(\alpha-N_{4}-N_{4}\left(\frac{\alpha-p_{1_{0}} N_{3}-N_{4}}{N_{4}}\right)\right)
\end{aligned}
$$

$$
(S x)(n) \geq N_{3}
$$

Hence

$$
N_{3} \leq(S x)(n) \leq N_{4} \text { for } n \geq n_{1}
$$

Thus we have proved that $(S x)(n) \in \Omega$ for any $x \in \Omega$. This means that $S \Omega \subset \Omega$. To apply contraction mapping principle, we shall show S is a contraction mapping on Ω. Thus $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$,

$$
\begin{aligned}
&\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \\
& \leq \frac{1}{p_{1}}\left(\left\|x_{1}-x_{2}\right\|-p_{2}\left\|x_{1}-x_{2}\right\|+\sum_{s=n}^{\infty} Q_{1}(s)\left\|x_{1}-x_{2}\right\|\right. \\
&\left.+\sum_{s=n}^{\infty} Q_{2}(s)\left\|x_{1}-x_{2}\right\|\right) \\
&= \frac{1}{p_{1}}\left(1-p_{2}+\sum_{s=n}^{\infty} Q_{1}(s)+\sum_{s=n}^{\infty} Q_{2}(s)\right)\left\|x_{1}-x_{2}\right\| \\
&= \frac{1}{p_{1}}\left(1-p_{2}+\frac{\left(p_{1}+p_{2}\right) N_{4}-\alpha}{N_{4}}+\frac{\alpha-p_{1_{0}} N_{3}-N_{4}}{N_{4}}\right) \\
&\left\|x_{1}-x_{2}\right\| \\
&= \frac{1}{p_{1}}\left(\frac{p_{1} N_{4}-p_{1_{0}} N_{3}}{N_{4}}\right)\left\|x_{1}-x_{2}\right\| \\
&= \lambda_{4}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{4}=1-\frac{p_{1_{0}} N_{3}}{p_{1} N_{4}}$. This implies that

$$
\left\|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right\| \leq \lambda_{4}\left\|x_{1}-x_{2}\right\| .
$$

Thus we have proved that S is a contraction mapping on Ω. In fact $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$ we have

$$
\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \leq p(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right| \leq \lambda_{4}\left\|x_{1}-x_{2}\right\| .
$$

Since $0<\lambda_{4}<1, S$ is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

Theorem 2.5. Assume that $-1<p_{1} \leq P_{1}(n) \leq 0$, $0 \leq P_{2}(n) \leq p_{2}<1+p_{1}$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.
Proof. From (2.1), we can choose $n_{1} \geq n_{0}$ sufficiently large satisfying (2.2) such that

$$
\begin{align*}
& \sum_{s=n}^{\infty} Q_{1}(s) \leq \frac{\left(1+p_{1}\right) M_{6}-\alpha}{M_{6}}, n \geq n_{1}, \tag{2.12}\\
& \sum_{s=n}^{\infty} Q_{2}(s) \leq \frac{\alpha-p_{2} M_{6}-M_{5}}{M_{6}}, n \geq n_{1} . \tag{2.13}
\end{align*}
$$

where M_{5} and M_{6} are positive constants such that
$M_{5}+p_{2} M_{6}<\left(1+p_{1}\right) M_{6}$ and
$\alpha \in\left(M_{5}+p_{2} M_{6},\left(1+p_{1}\right) M_{6}\right)$.
Let $l_{n_{0}}^{\infty}$ be the set of all real sequence with the norm $\|x\|=\sup |x(n)|<\infty$. Then $l_{n_{0}}^{\infty}$ is a Banach space. We define a closed, bounded and convex subset Ω of $l_{n_{0}}^{\infty}$ as follows

$$
\Omega=\left\{x \in l_{n_{0}}^{\infty}: M_{5} \leq x(n) \leq M_{6}, n \geq n_{0}\right\} .
$$

Define a mapping $S: \Omega \rightarrow l_{n_{0}}^{\infty}$ as follows
$(S x)(n)=\left\{\begin{array}{l}\alpha-P_{1}(n) x\left(n-\tau_{1}\right)-P_{2}(n) x\left(n+\tau_{2}\right) \\ +\sum_{s=n}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right], n \geq n_{1}, \\ (S x)\left(n_{1}\right),\end{array}\right.$
Obviously $S x$ is continuous. For $n \geq n_{1}$ and $x \in \Omega$, from (2.12) and (2.13) respectively, it follows that

$$
\begin{aligned}
(S x)(n) & \leq \alpha-P_{1}(n) x\left(n-\tau_{1}\right)+\sum_{s=n}^{\infty} Q_{1}(s) x\left(s-\sigma_{1}\right) \\
& \leq \alpha-p_{1} M_{6}+M_{6} \sum_{s=n}^{\infty} Q_{1}(s) \\
& =\alpha-p_{1} M_{6}+M_{6}\left(\frac{\left(1+p_{1}\right) M_{6}-\alpha}{M_{6}}\right) \\
(S x)(n) & \leq M_{6}
\end{aligned}
$$

Also we have

$$
\begin{aligned}
(S x)(n) & \geq \alpha-P_{2}(n) x\left(n+\tau_{2}\right)-\sum_{s=n}^{\infty} Q_{2}(s) x\left(s+\sigma_{2}\right) \\
& \geq \alpha-p_{2} M_{6}-M_{6} \sum_{s=n}^{\infty} Q_{2}(s) \\
& =\alpha-p_{2} M_{6}-M_{6}\left(\frac{\alpha-p_{2} M_{6}-M_{5}}{M_{6}}\right)
\end{aligned}
$$

$$
(S x)(n) \geq M_{5}
$$

Hence

$$
M_{5} \leq(S x)(n) \leq M_{6} \text { for } n \geq n_{1}
$$

Thus we have proved that $(S x)(n) \in \Omega$ for any $x \in \Omega$. This means that $S \Omega \subset \Omega$. To apply contraction mapping principle, it remains to show that S is a contraction mapping on Ω. Thus $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$,

$$
\begin{aligned}
&\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \\
& \leq-p_{1}\left\|x_{1}-x_{2}\right\|+p_{2}\left\|x_{1}-x_{2}\right\|+\sum_{s=n}^{\infty} Q_{1}(s)\left\|x_{1}-x_{2}\right\| \\
&+\sum_{s=n}^{\infty} Q_{2}(s)\left\|x_{1}-x_{2}\right\| \\
&=\left(-p_{1}+p_{2}+\sum_{s=n}^{\infty} Q_{1}(s)+\sum_{s=n}^{\infty} Q_{2}(s)\right)\left\|x_{1}-x_{2}\right\| \\
&=\left(-p_{1}+p_{2}+\frac{\left(1+p_{1}\right) M_{6}-\alpha}{M_{6}}+\frac{\alpha-p_{2} M_{6}-M_{5}}{M_{6}}\right) \\
&\left\|x_{1}-x_{2}\right\| \\
&= \frac{M_{6}-M_{5}}{M_{6}}\left(\left\|x_{1}-x_{2}\right\|\right) \\
&= \lambda_{5}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\quad \lambda_{5}=1-\frac{M_{5}}{M_{6}}$. This implies that

$$
\left\|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right\| \leq \lambda_{5}\left\|x_{1}-x_{2}\right\| .
$$

Thus we have proved that S is a contraction mapping on Ω. In fact $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$ we have

$$
\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \leq p(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right| \leq \lambda_{5}\left\|x_{1}-x_{2}\right\| .
$$

Since $0<\lambda_{5}<1$, we conclude that S is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

Theorem 2.6. Assume that $-1<p_{1} \leq P_{1}(n) \leq 0$, $-1-p_{1}<p_{2} \leq P_{2}(n) \leq 0$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.
Proof. From (2.1), we can choose $n_{1} \geq n_{0}$ sufficiently large satisfying (2.2) such that

$$
\begin{align*}
& \sum_{s=n}^{\infty} Q_{1}(s) \leq \frac{\left(1+p_{1}+p_{2}\right) N_{6}-\alpha}{N_{6}}, n \geq n_{1}, \tag{2.14}\\
& \sum_{s=n}^{\infty} Q_{2}(s) \leq \frac{\alpha-N_{5}}{N_{6}}, n \geq n_{1} \tag{2.15}
\end{align*}
$$

where N_{5} and N_{6} are positive constants such that

$$
N_{5}<\left(1+p_{1}+p_{2}\right) N_{6} \text { and } \alpha \in\left(N_{5},\left(1+p_{1}+p_{2}\right) N_{6}\right)
$$

Let $l_{n_{0}}^{\infty}$ be the set of all real sequence with the norm $\|x\|=\sup |x(n)|<\infty$. Then $l_{n_{0}}^{\infty}$ is a Banach space. We define a closed, bounded and convex subset Ω of $l_{n_{0}}^{\infty}$ as follows

$$
\Omega=\left\{x \in l_{n_{0}}^{\infty}: N_{5} \leq x(n) \leq N_{6}, n \geq n_{0}\right\} .
$$

Define a mapping $S: \Omega \rightarrow l_{n_{0}}^{\infty}$ as follows

$$
(S x)(n)=\left\{\begin{array}{l}
\alpha-P_{1}(n) x\left(n-\tau_{1}\right)-P_{2}(n) x\left(n+\tau_{2}\right) \\
+\sum_{s=n}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right], n \geq n_{1}, \\
(S x)\left(n_{1}\right), \\
n_{0} \leq n \leq n_{1} .
\end{array}\right.
$$

Obviously $S x$ is continuous. For $n \geq n_{1}$ and $x \in \Omega$, from (2.14) and (2.15) respectively, it follows that

$$
\begin{aligned}
(S x)(n) \leq & \alpha-P_{1}(n) x\left(n-\tau_{1}\right)-P_{2}(n) x\left(n+\tau_{2}\right) \\
& +\sum_{s=n}^{\infty} Q_{1}(s) x\left(s-\sigma_{1}\right) \\
\leq & \alpha-p_{1} N_{6}-p_{2} N_{6}+N_{6} \sum_{s=n}^{\infty} Q_{1}(s) \\
= & \alpha-p_{1} N_{6}-p_{2} N_{6} \\
& +N_{6}\left(\frac{\left(1+p_{1}+p_{2}\right) N_{6}-\alpha}{N_{6}}\right) \\
(S x)(n) \leq & N_{6}
\end{aligned}
$$

Furthermore

$$
\begin{aligned}
(S x)(n) & \geq \alpha-\sum_{s=n}^{\infty} Q_{2}(s) x\left(s+\sigma_{2}\right) \\
& \geq \alpha-N_{6} \sum_{s=n}^{\infty} Q_{2}(s) \\
& =\alpha-N_{6}\left(\frac{\alpha-N_{5}}{N_{6}}\right) \\
(S x)(n) & \geq N_{5}
\end{aligned}
$$

Hence

$$
N_{5} \leq(S x)(n) \leq N_{6} \text { for } n \geq n_{1} .
$$

Thus we have proved that $(S x)(n) \in \Omega$ for any $x \in \Omega$.
This means that $S \Omega \subset \Omega$. To apply contraction mapping principle, we shall show S is a contraction mapping on Ω. Thus $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$,

$$
\begin{aligned}
&\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \\
& \leq-p_{1}\left\|x_{1}-x_{2}\right\|-p_{2}\left\|x_{1}-x_{2}\right\|+\sum_{s=n}^{\infty} Q_{1}(s)\left\|x_{1}-x_{2}\right\| \\
&+\sum_{s=n}^{\infty} Q_{2}(s)\left\|x_{1}-x_{2}\right\| \\
&=\left(-p_{1}-p_{2}+\sum_{s=n}^{\infty} Q_{1}(s)+\sum_{s=n}^{\infty} Q_{2}(s)\right)\left\|x_{1}-x_{2}\right\| \\
&=\left(-p_{1}-p_{2}+\frac{\left(1+p_{1}+p_{2}\right) N_{6}-\alpha}{N_{6}}+\frac{\alpha-N_{5}}{N_{6}}\right) \\
&\left\|x_{1}-x_{2}\right\| \\
&= \frac{N_{6}-N_{5}}{N_{6}}\left(\left\|x_{1}-x_{2}\right\|\right) \\
&= \lambda_{6}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{6}=1-\frac{N_{5}}{N_{6}}$. This implies that

$$
\left\|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right\| \leq \lambda_{6}\left\|x_{1}-x_{2}\right\| .
$$

Thus we have proved that S is a contraction mapping on Ω. In fact $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$ we have

$$
\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \leq p(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right| \leq \lambda_{6}\left\|x_{1}-x_{2}\right\| .
$$

Since $0<\lambda_{6}<1, S$ is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

Theorem 2.7. Assume that $-\infty<p_{1_{0}} \leq P_{1}(n)<p_{1}<-1$, $0 \leq P_{2}(n) \leq p_{2}<-p_{1}-1$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.
Proof. In view of (2.1), we can choose $n_{1} \geq n_{0}$ sufficiently large satisfying (2.7) such that

$$
\begin{align*}
& \sum_{s=n}^{\infty} Q_{1}(s) \leq \frac{p_{1_{0}} M_{7}+\alpha}{M_{8}}, n \geq n_{1} \tag{2.16}\\
& \sum_{s=n}^{\infty} Q_{2}(s) \leq \frac{\left(-p_{1}-1-p_{2}\right) M_{8}-\alpha}{M_{8}}, n \geq n_{1} \tag{2.17}
\end{align*}
$$

where M_{7} and M_{8} are positive constants such that
$-p_{1_{0}} M_{7}<\left(-p_{1}-1-p_{2}\right) M_{8}$ and
$\alpha \in\left(-p_{1_{0}} M_{7},\left(-p_{1}-1-p_{2}\right) M_{8}\right)$.

Let $l_{n_{0}}^{\infty}$ be the set of all real sequence with the norm $\|x\|=\sup |x(n)|<\infty$. Then $l_{n_{0}}^{\infty}$ is a Banach space. We define a closed, bounded and convex subset Ω of $l_{n_{0}}^{\infty}$ as follows

$$
\Omega=\left\{x \in l_{n_{0}}^{\infty}: M_{7} \leq x(n) \leq M_{8}, n \geq n_{0}\right\} .
$$

Define a mapping $S: \Omega \rightarrow l_{n_{0}}^{\infty}$ as follows
$(S x)(n)=\left\{\begin{array}{l}\frac{-1}{P_{1}\left(n+\tau_{1}\right)}\left\{\alpha+x\left(n+\tau_{1}\right)+P_{2}\left(n+\tau_{1}\right) x\left(n+\tau_{1}+\tau_{2}\right)\right. \\ \left.-\sum_{s=n+\tau_{1}}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right]\right\}, n \geq n_{1}, \\ (S x)\left(n_{1}\right), \\ n_{0} \leq n \leq n_{1} .\end{array}\right.$
Obviously $S x$ is continuous. For $n \geq n_{1}$ and $x \in \Omega$, from (2.17) and (2.16) respectively, it follows that

$$
\begin{aligned}
(S x)(n) \leq & \frac{-1}{P_{1}\left(n+\tau_{1}\right)}\left(\alpha+x\left(n+\tau_{1}\right)\right. \\
& +P_{2}\left(n+\tau_{1}\right) x\left(n+\tau_{1}+\tau_{2}\right) \\
& \left.+\sum_{s=n+\tau_{1}}^{\infty} Q_{1}(s) x\left(s-\sigma_{1}\right)\right) \\
& \leq \frac{-1}{p_{1}}\left(\alpha+M_{8}+p_{2} M_{8}+M_{8} \sum_{s=n}^{\infty} Q_{2}(s)\right) \\
& =\frac{-1}{p_{1}}\left(\alpha+M_{8}+p_{2} M_{8}\right. \\
& \left.+M_{8}\left(\frac{\left(-p_{1}-1-p_{2}\right) M_{8}-\alpha}{M_{8}}\right)\right)
\end{aligned}
$$

$$
(S x)(n) \leq M_{8}
$$

Also

$$
\begin{aligned}
(S x)(n) & \geq \frac{-1}{P_{1}\left(n+\tau_{1}\right)}\left(\alpha-\sum_{s=n+\tau_{1}}^{\infty} Q_{1}(s) x\left(s-\sigma_{1}\right)\right) \\
& \geq \frac{-1}{p_{1_{0}}}\left(\alpha-M_{8} \sum_{s=n}^{\infty} Q_{1}(s)\right) \\
& =\frac{-1}{p_{1_{0}}}\left(\alpha-M_{8}\left(\frac{p_{1_{0}} M_{7}+\alpha}{M_{8}}\right)\right) \\
(S x)(n) & \geq M_{7}
\end{aligned}
$$

Hence

$$
M_{7} \leq(S x)(n) \leq M_{8} \text { for } n \geq n_{1}
$$

Hence $(S x)(n) \in \Omega$ for any $x \in \Omega$.

This means that $S \Omega \subset \Omega$. In order to apply contraction mapping principle, we shall show S is a contraction mapping on Ω. Thus if $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$,

$$
\begin{aligned}
&\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \\
& \leq \frac{-1}{p_{1}}\left(1+p_{2}+\sum_{s=n}^{\infty} Q_{1}(s)+\sum_{s=n}^{\infty} Q_{2}(s)\right)\left\|x_{1}-x_{2}\right\| \\
&= \frac{-1}{p_{1}}\left(1+p_{2}+\frac{p_{1_{0}} M_{7}+\alpha}{M_{8}}+\frac{\left(-p_{1}-1-p_{2}\right) M_{8}-\alpha}{M_{8}}\right) \\
&\left\|x_{1}-x_{2}\right\| \\
&= \frac{-1}{p_{1}}\left(\frac{p_{1_{0}} M_{7}-p_{1} M_{8}}{M_{8}}\right)\left\|x_{1}-x_{2}\right\| \\
&= \lambda_{7}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{7}=1-\frac{p_{1_{0}} M_{7}}{p_{1} M_{8}}$. This implies that

$$
\left\|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right\| \leq \lambda_{7}\left\|x_{1}-x_{2}\right\|
$$

Thus we have proved that S is a contraction mapping on Ω. In fact $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$ we have

$$
\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \leq p(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right| \leq \lambda_{7}\left\|x_{1}-x_{2}\right\| .
$$

Since $0<\lambda_{7}<1, S$ is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

Theorem 2.8. Assume that $-\infty<p_{1_{0}} \leq P_{1}(n)<p_{1}<-1$, $p_{1}+1<p_{2} \leq P_{2}(n) \leq 0$ and (2.1) hold, then (1.1) has a bounded non-oscillatory solution.
Proof. In view of (2.1), we can choose $n_{1} \geq n_{0}$ sufficiently large satisfying (2.7) such that

$$
\begin{align*}
& \sum_{s=n}^{\infty} Q_{1}(s) \leq \frac{p_{1_{0}} N_{7}+p_{2} N_{8}+\alpha}{N_{8}}, n \geq n_{1} \tag{2.18}\\
& \sum_{s=n}^{\infty} Q_{2}(s) \leq \frac{\left(-p_{1}-1\right) N_{8}-\alpha}{N_{8}}, \quad n \geq n_{1} . \tag{2.19}
\end{align*}
$$

where N_{7} and N_{8} are positive constants such that $-p_{1_{0}} N_{7}-p_{2} N_{8}<\left(-p_{1}-1\right) N_{8}$ and
$\alpha \in\left(-p_{1_{0}} N_{7}-p_{2} N_{8},\left(-p_{1}-1\right) N_{8}\right)$.
Let $l_{n_{0}}^{\infty}$ be the set of all real sequence with the norm $\|x\|=\sup |x(n)|<\infty$. Then $l_{n_{0}}^{\infty}$ is a Banach space. We define a closed, bounded and convex subset Ω of $l_{n_{0}}^{\infty}$ as follows

$$
\Omega=\left\{x \in l_{n_{0}}^{\infty}: N_{7} \leq x(n) \leq N_{8}, n \geq n_{0}\right\} .
$$

Define a mapping $S: \Omega \rightarrow l_{n_{0}}^{\infty}$ as follows

$$
(S x)(n)=\left\{\begin{array}{l}
\frac{-1}{P_{1}\left(n+\tau_{1}\right)}\left\{\alpha+x\left(n+\tau_{1}\right)+P_{2}\left(n+\tau_{1}\right) x\left(n+\tau_{1}+\tau_{2}\right)\right. \\
\left.-\sum_{s=n+\tau_{1}}^{\infty}\left[Q_{1}(s) x\left(s-\sigma_{1}\right)-Q_{2}(s) x\left(s+\sigma_{2}\right)\right]\right\}, n \geq n_{1}, \\
(S x)\left(n_{1}\right), \\
n_{0} \leq n \leq n_{1} .
\end{array}\right.
$$

Obviously $S x$ is continuous. For $n \geq n_{1}$ and $x \in \Omega$, from (2.19) and (2.18) respectively, it follows that

$$
\begin{aligned}
(S x)(n) \leq & \frac{-1}{P_{1}\left(n+\tau_{1}\right)}\left(\alpha+x\left(n+\tau_{1}\right)\right. \\
& \left.+\sum_{s=n+\tau_{1}}^{\infty} Q_{2}(s) x\left(s+\sigma_{2}\right)\right) \\
& \leq \frac{-1}{p_{1}}\left(\alpha+N_{8}+N_{8} \sum_{s=n}^{\infty} Q_{2}(s)\right) \\
& =\frac{-1}{p_{1}}\left(\alpha+N_{8}+N_{8}\left(\frac{\left(-p_{1}-1\right) N_{8}-\alpha}{N_{8}}\right)\right)
\end{aligned}
$$

$$
(S x)(n) \leq N_{8}
$$

Furthermore

$$
\begin{aligned}
(S x)(n) \geq & \frac{-1}{P_{1}\left(n+\tau_{1}\right)}\left(\alpha+P_{2}\left(n+\tau_{1}\right) x\left(n+\tau_{1}+\tau_{2}\right)\right. \\
& \left.-\sum_{s=n+\tau_{1}}^{\infty} Q_{1}(s) x\left(s-\sigma_{1}\right)\right) \\
\geq & \frac{-1}{p_{1_{0}}}\left(\alpha+p_{2} N_{8}-N_{8} \sum_{s=n}^{\infty} Q_{1}(s)\right) \\
& =\frac{-1}{p_{1_{0}}}\left(\alpha+p_{2} N_{8}-N_{8}\left(\frac{p_{1_{0}} N_{7}+p_{2} N_{8}+\alpha}{N_{8}}\right)\right)
\end{aligned}
$$

$$
(S x)(n) \geq N_{7}
$$

Hence

$$
N_{7} \leq(S x)(n) \leq N_{8} \text { for } n \geq n_{1}
$$

Thus we have proved that $(S x)(n) \in \Omega$ for any $x \in \Omega$.
This means that $S \Omega \subset \Omega$. To apply contraction mapping principle, we shall show S is a contraction mapping on Ω. Thus $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$,

$$
\begin{aligned}
&\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \\
& \leq \frac{-1}{p_{1}}\left(\left\|x_{1}-x_{2}\right\|-p_{2}\left\|x_{1}-x_{2}\right\|+\sum_{s=n}^{\infty} Q_{1}(s)\left\|x_{1}-x_{2}\right\|\right. \\
&\left.+\sum_{s=n}^{\infty} Q_{2}(s)\left\|x_{1}-x_{2}\right\|\right) \\
&= \frac{-1}{p_{1}}\left(1-p_{2}+\sum_{s=n}^{\infty} Q_{1}(s)+\sum_{s=n}^{\infty} Q_{2}(s)\right)\left\|x_{1}-x_{2}\right\| \\
&= \frac{-1}{p_{1}}\left(1-p_{2}+\frac{p_{1_{0}} N_{7}+p_{2} N_{8}+\alpha}{N_{8}}+\frac{\left(-p_{1}-1\right) N_{8}-\alpha}{N_{8}}\right) \\
&\left\|x_{1}-x_{2}\right\| \\
&= \frac{-1}{p_{1}}\left(\frac{p_{1_{0}} N_{7}-p_{1} N_{8}}{N_{8}}\right)\left\|x_{1}-x_{2}\right\| \\
&= \lambda_{8}\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

where $\lambda_{8}=1-\frac{p_{1_{0}} N_{7}}{p_{1} N_{8}}$. This implies that

$$
\left\|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right\| \leq \lambda_{8}\left\|x_{1}-x_{2}\right\| .
$$

Thus we have proved that S is a contraction mapping on Ω. In fact $x_{1}, x_{2} \in \Omega$ and $n \geq n_{1}$ we have

$$
\left|\left(S x_{1}\right)(n)-\left(S x_{2}\right)(n)\right| \leq p(n)\left|x_{1}\left(n-\tau_{1}\right)-x_{2}\left(n-\tau_{1}\right)\right| \leq \lambda_{8}\left\|x_{1}-x_{2}\right\| .
$$

Since $0<\lambda_{8}<1, S$ is a contraction mapping on Ω. Thus S has a unique fixed point which is a positive and bounded solution of (1.1). This completes the proof.

III. REFERENCES

[1] R.P. Agarwal, M. Bohner, S.R. Grace, D. ORegan, Discrete Oscillation Theory, Hindawi Publishing Corporation, 2005.
[2] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation Theory for Difference and Functional Differential Equations, Kluwer Academic, (2000).
[3] T. Candan, Existence of non-oscillatory solutions of first order nonlinear neutral differential equations, Appl. Math. Lett., 26 (2013), 1182 1186.
[4] A. George Maria Selvam, M. Paul Loganathan and C. Silambarasan, Existence of Nonoscillatory Solutions of Third-Order Nonlinear Neutral Delay Difference Equations, International Journal of Engineering Research \& Management Technology (IJERMT), ISSN: 2348 - 4039, March - 2016, Volume - 3, Issue - 2 .
[5] J. Hale, Theory of Functional Differential Equations, Vol. 3, Applied Mathematical Sciences, Springer, 2nd edition, 1977.
[6] C. Jinfa, Existence of a nonoscillatory solution of a second-order linear neutral difference equation, Appl. Math. Lett. 20 (2007) pp. $892-899$.
[7] M. R. S. Kulenovic and S. Hadziomerspahic, Existence of nonoscillatory solution of second order linear neutral delay equation, Journal of Mathematical Analysis and Applications, Vol.228, no.2, 436-448, 1998.
[8] S. Lourdu Marian, M. Paul Loganathan, A. George Maria Selvam, Existence of Nonoscillatory Solutions of Second Order Linear Neutral Delay Difference Equations with Forcing term, International Journal of Engineering Research and Applications (IJERA), Vol. 2, Issue 1, Jan - Feb 2012, pp. 1099 - 1107.
[9] Tuncay Candan, Existence of non-oscillatory solutions to first-order neutral differential equations, Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 39, pp. 1-11.
[10] Y.H. Yu, H.Z. Wang, Nonoscillatory solutions of second-order nonlinear neutral delay equations, J. Math. Anal. Appl. 311 (2005), 445-456.
[11] Yong Zhou, Existence for nonoscillatory solutions of second order nonlinear differential equations, J. Math. Anal. Appl. 331 (2007), 91 - 96.

